
PHYSICAL REVIEW E 66, 061603 ~2002!
Parametric links among Monte Carlo, phase-field, and sharp-interface models of interfacial motion
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Parametric links are made among three mesoscale simulation paradigms: phase-field, sharp-interface, and
Monte Carlo. A two-dimensional, square lattice, 1/2 Ising model is considered for the Monte Carlo method,
where an exact solution for the interfacial free energy is known. The Monte Carlo mobility is calibrated as a
function of temperature using Glauber kinetics. A standard asymptotic analysis relates the phase-field and
sharp-interface parameters, and this allows the phase-field and Monte Carlo parameters to be linked. The result
is derived without bulk effects but is then applied to a set of simulations with the bulk driving force included.
An error analysis identifies the domain over which the parametric relationships are accurate.
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I. INTRODUCTION

Phase-field~PF! @1–9# and Monte Carlo~MC! @10–17#
models are commonly used to simulate the motion of ph
and grain boundaries. The two approaches are o
contrasted—continuous versus discrete, deterministic ve
probabilistic, diffuse interface versus sharp interface—
making analytical links between the relevant parameter
difficult because there are few closed form solutions for
MC models. Such links would be useful in making quanti
tive assessments of which method best serves a given a
cation and could further the development of parametric re
tions between meso and macro length scales@18#. A
comparison of the Potts and phase-field models has b
carried out in Ref.@19#, but no analytical relationship be
tween the two approaches was developed. If each parad
can be analytically related to deterministic, sharp-interfa
~SI! kinetics, the SI driving force and interfacial mobilit
provide a means for relating their parameters. Here sh
interface refers to the modeling paradigm wherein the in
face is endowed with a surface energy and has a velo
proportional to the thermodynamic driving force for su
motion. Figure 1 shows a single time slice from all thr
paradigms for a single internal grain shrinking because
surface energy.

The asymptotic analysis of the PF equations creates
leg of such a link, but an analogous leg for the MC method
not generally feasible; the approach is based on a mi
scopic Hamiltonian, and the analytical evaluation of therm
dynamic properties has been obtained for only a few mo
systems. Moreover, the MC methods employ probabilis
algorithms that make it difficult to derive an analytical for
for the effective mobility of an interface. Within a speci
setting, though, both the driving forces and mobilities of t
SI and MC models can be related. The result can then
used to relate the PF and MC models.

An analytical link between the MC and SI driving force
can be made by considering a particularly simple M
system—a two-dimensional square lattice in the absenc
bulk energy for which the interfacial free energy of the 1
Ising model has been derived by Onsager@20#. Because the
SI interfacial energy is isotropic, the MC temperature m
be sufficiently high that anisotropic lattice effects are neg
1063-651X/2002/66~6!/061603~8!/$20.00 66 0616
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gible @28#. With the free energies related, a numerical ca
bration of the MC mobility can be made using its SI cou
terpart. All three modeling methods discussed can be use
track interfaces of arbitrary shape, but it is sufficient to
strict attention to the circular geometry illustrated in Fig.

With a link established between the two paradigms, b
energy can be included as an additional driving force. T
can only be accomplished because the driving force and
bility were treated separately in the absence of bulk effe
We posit that the MC mobility function is unchanged by t
inclusion of bulk energy and give numerical evidence for t
over a range of values of bulk energy, interaction energy,
temperature. While the bulk energy considered here depe
only on the phase or orientation, the method should ap
equally well to systems for which the bulk energy is a fun
tion of elastic strain, temperature, or solute concentration
may be possible in the future to derive an analytical expr
sion for the mobility of the MC system, as suggested
Spohn @21#, but our objective is simply to obtain a set o
relations that allow quantitative comparisons to be made
tween PF and MC models. Even so, we derive an estim

FIG. 1. Single time slices of shrinking internal grains illustratin
the kinematic distinctions between~a! sharp-interface~b! phase-
field, ~c! Monte Carlo~low temperature!, and~d! Monte Carlo~high
temperature! models.
©2002 The American Physical Society03-1
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for the mobility at low temperature, which matches qu
well with numerical results.

II. ENERGY

The energy functionals associated with each mode
paradigm are intended to represent the same physical
cess.

A. Sharp-interface energy

For the circular geometry to be considered, the total s
tem free energy within a SI paradigm is

Es52sApA2bs~A02A!. ~1!

Here s is the free surface energy per unit boundary len
and bs is the bulk free energy difference per unit area b
tween inner and outer phases, so thatbs.0 implies that the
inner grain has a higher bulk energy than the outer grain.
areaA0 is the total area of the domain under consideratio

B. Phase-field energy

The PF paradigm is based on the notion of an order
rameterw that identifies phases or grain orientations. In t
work, the order parameter takes on a value of either 0 o
away from interfaces and suffers a rapid change across in
face boundary regions. For the sake of clarity, we start wit
nondimensional form for the free energy per unit area,ep .
The lowercase symbol indicates an energy density as
posed to the total energy of the system. This free energ
given by

ep5e21f ~w!1bp~w!1
eg

2
u,wu2. ~2!

Here f (w) is a double-well exchange energy,bp(w) is the
bulk energy, ande is a small parameter that enforces t
required scaling between bulk and interfacial terms and c
trols the interfacial width. Interfacial energy is modeled
the gradient term (eg/2)u,wu2 in terms of the parameterg.
The exchange and bulk energies that we consider are s
dard in such models:

f ~w!5
1

2
w2~12w!2, ~3!

bp~w!5qS w22
2w3

3 D .

This exchange energy has minima atw50 ~outer! and w
51 ~inner! corresponding to two pure phases or grain orie
tations. The bulk energy function is such thatq/3 is the in-
crease in the bulk energy of the inner phase (w51) relative
to the outer phase (w50).

C. Monte Carlo energy

The two-state Ising model and multistate Potts model
two frequently implemented statistical models that use
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MC approach. For each of theN points in a discrete grid,
bulk and surface energy are modeled through lattice ene
and an interaction term is associated withM neighboring
points. The system Hamiltonian is

H5(
N

bmSi2J(
N

(
M

dsi ,sj
, ~4!

whereSi is the spin variable (11 for the inner grain and21
for the outer grain! at site i and the first term accounts fo
bulk energy differences between grains. The second term
the Hamiltonian is the interaction energy between near
neighbor bins withd the Kronecker delta andJ.0. A square
grid is used with a lattice spacing ofD.

III. KINETIC EQUATIONS

The SI equation of motion is based on the supposition t
the interface normal speed is proportional to the thermo
namic driving force associated with such movement. F
two-dimensional geometries, the kinetic equation can be
pressed in terms of the rate of change of internal grain a
Ȧ:

Ȧ5msAA

pS 2
dEs

dA D5msS 2s2bsAA

p D , ~5!

wherems is a SI mobility coefficient. This equation will be
used to relate the PF and MC kinetic equations presen
below. For the PF paradigm, evolution is based on the c
cept of an Onsager gradient flow—i.e., the boundary veloc
is proportional to the thermodynamic driving force for su
motion @21,22#. The nondimensional evolution equation is

ẇ5e21mp~2dwep!5mp@2e22f 8~w!2e21bp8~w!1gDw#,
~6!

where mp is the PF mobility anddwep is the variational
derivative of the free energy functional given in Eq.~2!.

In the MC paradigm, evolution is modeled as a series
flips for all lattice points in the domain. The domain is tak
to be a unit square divided into cells of side lengthD. A
standard Glauber algorithm has been used, wherein the p
ability p for each flip is a function of the resulting change
energy:

p5H e2[[ Em]] Trial /T, @@Em##Trial .0,

1, @@Em##Trial <0.
~7!

Here @@Em##Trial is the energy change associated with t
candidate flip:

@@Em##Trial5bm~Sk2Si !1J(
M

~dsi ,sj
2dsk ,sj

!. ~8!

In the expression above,Sk andSi are the new and old states
respectively, andT is the fundamental temperature. The ra
dom number generator algorithm can be found in Ref.@23#.
3-2
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IV. PARAMETRIC LINKS AMONG THE PARADIGMS

A. PF-SI link

A standard asymptotic analysis@24–27# can be used to
relate the kinetic equations for PF and SI paradigms.
outer expansion is used to match bulk properties, while
inner expansion across an arbitrary interface relates inte
cial properties. The key scaling parameter, which appear
Eq. 2, is e. As this parameter is reduced, the PF kine
equation for the inner phase area converges to the follow
nondimensional kinetic equation:

Ȧ522pmpg24pmpqAgAA

p
. ~9!

This nondimensional equation is linked to the dimensiona
equation by introducing an arbitrary timetp and lengthd, so
that Eq.~5! has the nondimensional representation

Ȧ5
2mstps

d2
2

msbstp

d
AA

p
. ~10!

A comparison of Eqs.~9! and~10! provides the desired para
metric relationships. They are given below in the order
interfacial free energy, bulk energy, and mobility:

g5
mstps

d2
, ~11!

q5
bs

2
Atpms

s
,

mp5
1

2p
,

wherebs is the bulk energy jump across the sharp interfa
s is the interfacial free energy per unit length,ms is the SI
mobility, and the value of the PF mobilitymp is chosen for
convenience.

In implementations of the PF model, however, the valu
of g andq must be of order 1 sincee is assumed to contro
the size of each term. Given an SI system, it is theref
more convenient to chooseg andq, and then use Eq.~11! to
determine the time and length scales that must be use
order to have the PF model produce results equivalen
those of the SI theory:

tp5
4q2s

msbs
2

, d5
2qs

bsAg
. ~12!

As an aside, a proper discretization of the PF domain
such that interfacial zones span approximately ten lat
points. To highest order ine, the one-dimensional profile o
the order parameter across an interface centered atx50 is
given by

w~x!5
1

2 F11tanhS x

eAg
D G , ~13!
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and this can be used to determine an appropriate numbe
spatial grid points. Figure 2 shows this profile and introduc
a parameterh that is used to estimate the effective width
the interfacial zone.

If one side of the actual square domain size isL, then the
PF model will be based on a square domain with sides
lengthL/d. This can be combined with the equation above
give the PF step sizeDp and number of grid points in eac
spatial directionNp :

Dp5
2eAg

h
tanh21~122h!, ~14!

Np5RoundS L

DpdD .

Typical values for the key parameters aree50.05, h
50.1, h510, q51, andg51. These parameter values ca
be applied to any problem of interest, with the SI paramet
used to determine what the linking time and length sca
must be via Eq.~12!. As a matter of numerical convenienc
the values ofq, g, ande may be altered slightly in order to
increase or decrease the number of lattice points in the
grid.

B. MC-SI link

To relate the MC parameters to those of SI theory, att
tion is first restricted to the interfacial driving force and u
is made of the classical Onsager solution for the interfa
free energy of the two-dimensional Ising model@20#:

s5
J

D F22a lnH cothS 1

a D J G . ~15!

In this equation,a5T/J, whereJ andT are the interaction
energy and fundamental temperature of the Ising model.
parameterD is the length of one MC cell. This interfacia
free energy function is plotted in Fig. 3. Because the SI
terfacial energy is isotropic, the MC temperature must
sufficiently high that anisotropic lattice effects are negligib
@28#.

The MC kinetics of Eq.~7! indicate that the motion of the
interface depends on temperature and interaction energy

FIG. 2. One-dimensional profile of the PF order parame
across an interface as given by Eq.~13!. The parameterh deter-
mines the effective interface width, Eq.~14! gives the PF step size
Dp , and h is the number of lattice points across the interface
typically set equal to 10.
3-3
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P. LIU AND M. T. LUSK PHYSICAL REVIEW E 66, 061603 ~2002!
througha, so Eq.~15! implies that the interface speed mu
be proportional tosD/J. This proportionality constant will
be referred to as the scaled mobilityma . Also, each flip
involves an areaD2, and a timetm per MC step must be
introduced. The MC averaged rate of change of internal a
must therefore be

Ȧ5S Dma

J D S D2

tm
D ~2s!. ~16!

Here the cell widthD is equal to 1/Nm , whereNm
2 is the total

number of MC cells. Two MC simulations with identica
bulk and surface energy densities will give results equiva
to the same SI simulation provided that the ratioD2/tm is the
same. In the absence of any need to make such a compa
though,tm51 is typically chosen. The SI and MC mobilitie
are then related byms5D3ma /Jtm .

It is possible to estimate the MC mobility at zero tempe
ture based on a purely geometric argument. Since no e
getically unfavorable fluctuations are allowed, interfac
tend to be smooth and boundary evolution is dominated
flips that do not change the system energy at all—i.e.,
squares that have two neighbors of the same spin as th
selves. The time-averaged behavior of such an assembly
be estimated from the total number of flips of each spin t
can occur. As illustrated in Fig. 4, the difference in possi
flips will always favor the outer grain by four units, so th
tmȦ/D2524 at zero temperature. As discussed below, t
estimate was found to be within 3% of the measured va
To further test the geometric argument for zero-tempera
kinetics, the MC simulator was temporarily modified to co
sider the eight nearest neighbors on a square lattice inste
just four. It is easy to show that the same geometric reas
ing predicts thattmȦ/D2528 when all eight neighbors ar
given the same pair potential. The averaged result of
simulations resulted intmȦ/D2527.745 for an error of
3.2%.

From Onsager’s expression for the interfacial free ene
s52 at zero temperature. Equation~16! then implies that

Ȧ5
22maD2

tm
5

24D2

tm
. ~17!

FIG. 3. Onsager solution for surface energys as a function of
temperatureT, interaction energyJ, and MC cell widthD. The
horizontal axis is in units ofa5T/J.
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The mobility functionma therefore has a low temperatur
asymptote ofma52.0.

Despite the fact that nearly all of the flips at low tempe
ture do not change the system energy, there are four key
that do lower the energy and serve as a winch in the dem
of the internal grain. To exhibit this, a zero-temperatu
simulation was run for which squares with more than tw
unlike neighbors were not allowed to flip. The inner gra
quickly evolved into a diamondlike shape, which slow
shrank as the tips were pinched off by random flips of b
dering squares. One time slice is shown in Fig. 5, where
tips are highlighted with arrows. Also shown in the figure a
tips that have been pinched off and isolated from the in
grain. Avronet al. provide a more detailed consideration
MC grain shape at low temperatures@29#.

FIG. 4. An internal grain is shown, and sites that can flip at z
temperature are labeled. There are seven dark sites and three
sites that can flip, so the inner grain would shrink by four units if
flips were actually realized. This is a general property of enclo
areas on a square lattice governed by the properties of only
nearest neighbors.

FIG. 5. MC simulations at zero temperature exhibit a diamo
like internal grain if sites with more than two unlike neighbors a
not allowed to flip. Circled points are tips that have been pinch
off and isolated by random flips of nearby sites.
3-4
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A series of numerical simulations were carried out to fi
ma as a function ofa. Although several domain sizes we
investigated for the sake of consistency, the data plotted
obtained using a 2003200 grid (D50.005). A single inter-
nal grain with an initially circular shape was considered a
65 different values ofa5T/J were tested. For each test, th
initial area fraction was set to either 0.25 or 0.5, and a m
mum of 50 simulations were averaged. The rate of chang
the internal area is plotted in Fig. 6 and exhibits a nea
bilinear dependence ona. Note that the zero-temperatur
value is very close to the value of 4 estimated above. T
bilinear fit is used with Eqs.~15! and ~17! to obtain an ex-
pression for the MC mobility functionma . This function is
plotted in Fig. 7 and appears in the parametric relationsh
given in Eqs.~18! preceded by the links previously given fo
interfacial and bulk energy:

s5
1

D F2J2TLnH cothS J

TD J G , ~18!

bs5
2bm

D2
,

ma5H 3.94

s
, a<0.639

5.0321.71a

s
, a.0.639,

ms5
D3ma

Jtm
.

In the conversion list, 2bm is the bulk energy difference be
tween the two orientations in the MC model. Note that t
relationship between bulk energy terms is based solely on
value of the dimensional bulk energy per unit area.

The dependence of shrink rate ona is similar to that
given by Safran, Sahni, and Grest@13#—specifically Fig. 11

FIG. 6. Numerically derived inner grain shrink rate and biline
fit. A 2003200 grid was used with an initial internal area fraction
0.25. A minimum of 50 runs were averaged for each data point,
most data points were derived from either 100 or 150 runs.
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in their paper. The quantitative differences merit a brief co
ment though. Their MC results are based on a 1003100 grid
with starting radius of only 20 lattice points, and no info
mation is provided as to the number of simulations that w
averaged to obtain each of the eight data points provid
They also point out that their MC data were fitted at o
point in order to match time scales with their estimate
mobility based on Langevin dynamics.

As an aside, simulations that allow for bulk site flippin
are no longer composed of pure phases; as the temper
increases the representation of second-phase nuclei wil
crease as shown in Fig. 1~d!. To take this into account, the
following map was used:

f actual5
f count2 f 0

122 f 0
. ~19!

Here f actual is the area fraction to be used for the kineti
comparison,f count is the area fraction measured in the sim
lation, and f 0 is the equilibrium area fraction of the phas
being considered. The parameterf 0 is a function of a
5T/J as shown in Fig. 8, where it is shown along with th
Bragg-Williams approximation for spontaneous magneti
tion density@3,4#.

r

d

FIG. 7. Numerically derived MC mobilities. The scaled mobili
ma is dimensionless. The curve is obtained directly from the fit
Fig. 6 and is given in Eq. 18.

FIG. 8. Plot of equilibrium volume fraction of the second pha
as a function ofa5T/J obtained from numerical simuation
~points! and using the Bragg-Williams approximation~solid curve!
for spontaneous magnetization—equivalent to the volume frac
being considered here.
3-5
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C. PF-MC link

With the SI theory connected to both the PF and M
models, a quantitative relationship can be obtained betw
the nondimensional PF parameters and the dimensional
parameters by giving the length and time scaling in terms
the MC parameters:

tp5
tm

ma
S Jq

bm
D 2

g~a!, ~20!

d5
1

Ag
S JqD

bm
Dg~a!,

g~a!522a lnFcothS 1

a D G .
V. BULK ENERGY EFFECTS

Parametric links have now been established among
three paradigms, under the restriction that the thermo
namic driving force is generated solely by interfacial fr
energy. Implicit in the form of Eqs.~5!–~7!, though, is the
assumption that the mobility of each method is independ
of the nature of the driving force. This implies that the lin
derived should be applicable to processes driven by a c
bination of bulk and interfacial driving forces.

FIG. 9. Comparison of PF and SI simulations for an inter
grain shrinking in the presence of both bulk and interfacial driv
forces.

FIG. 10. Comparison of MC and SI simulations for an intern
grain shrinking in the presence of both bulk and interfacial driv
forces. In all simulations, the MC step size wasD50.005. Set 1
and 2 results are the averages of five simulations, while set 3 re
are from a single simulation.
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A. PF-SI comparison

Figure 9 gives comparisons between the PF and SI m
els. In one case, the inner phase has a higher bulk en
(q.0), so both the surface energy and the phase bulk
ergy favor the outer phase. There is no significant differe
between the PF and SI curves. In the other case shown
outer phase has been made to have a higher energy (q,0)
but the surface energy still dominates the total driving for
The bulk energy difference retards the rate at which the in
grain shrinks and the interface moves more slowly. T
square lattice adopted in the PF simulation causes the in
face to tend towards a square in the later stages of evolu
This effect is magnified in processes for which the interfa
moves slowly@29#.

B. MC-SI comparison

Using the calibration obtained without bulk energy,
comparison of SI and MC predictions is now undertak
with bulk effects included. Figure 10 shows simulation r
sults for three typical cases. The first is for low fluctuation
the second for medium fluctuations, and the third for hi
fluctuations. As is clear from the figure, the MC resu
match well with the analytical predictions—consistent w
the supposition that the paradigm link should apply to sim
lations that include bulk energy.

l

l

lts

FIG. 11. Comparison of PF, MC, and SI simulations for
internal grain shrinking in the presence of both bulk and interfac
driving forces. In all simulations, the MC step size wasD50.01.

FIG. 12. Comparison of MC, PF, and SI models for a sing
planar interface moving through a square domain. The left phas
given the same properties as the inner phase of the previous s
lations. The MC results are each for a single simulation run.
3-6
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C. MC-PF-SI comparison

The results of a comparison of the PF, SI, and MC me
ods is shown in Fig. 11. The MC data for sets 1 and 3 w
obtained from single simulations, whereas the MC part of
2 is an average of ten simulations. It was found that, so l
as the modeling parameters were within a well-defin
range, the three techniques provide essentially the sam
netics.

As a final check, simulations were performed for a d
main with a planar interface and the results are shown in
12. An error analysis for the parametric link between M
and SI is discussed in the following section and is intend
to be a guide for determining the range over which the re
tionships are valid.

D. Conversion Accuracy

The link between SI and MC interfacial energies is bas
on Onsager’s derivation and is statistically exact for a pla
interface parallel to lattice planes, but is valid for curv
interfaces only when the MC temperature is sufficiently h
that the effects of lattice anisotropy are negligible. Secon
the link between mobilities is numerically fitted. Finall
bulk energy effects restrict the range ofbm/J as well as the
range of validity of the SI and MC links. For values of bu
energy that are too large, the evolution mechanism beco
quite different than that associated with reduction in inter
cial free energy. In the extreme, for instance, a sufficien
large bulk energy in the MC model will cause all lattic
points to flip to the same state in one MC step. To quan
this limitation, a series of simulations were performed ran
ing from motion dominated by interfacial free energy to m
tion dominated by bulk energy. For a sufficiently large bu
energy parameter in the MC model, the interface does
maintain a circular shape, and the rate of area change
verges from the SI prediction. A root mean error analysis w
performed over the region 0.5,a,1.8 with the bulk energy
changes in the region 0.025,bm /J,0.333. All the results
are plotted in Fig. 13. As can be seen in that figure, an e
of less than 10% is obtained provided 0.7<a<1.5. For a
given set of SI properties, though, the ratiobm /J can be

FIG. 13. Plot of rms error between Monte Carlo and sha
interface simulations as a function ofa andbm /J. The parametric
relationships developed in this investigation were used to ob
sharp-interface parameters directly from the Monte Carlo par
eters.
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tuned, since it is directly proportional to the MC cell siz
Thus, Fig. 13 can be used as a guide in choosing a MC
size that gives an acceptable conversion accuracy. The e
plotted is the rms error divided by the initial inner gra
fraction of 0.5. The roughness in the plot is due to the f
that only three simulation runs were averaged for each d
point.

The ability to control conversion accuracy is best illu
trated by considering what MC parameters are most ap
priate for a given set of SI properties. Equation~18! implies
that the set of MC parameters can be expressed as a fun
of the SI properties and the MC cell sizeD:

a5F21~msstm /D2!, ~21!

J5
sD

22a ln@coth~1/a!#
,

T5aJ,

bm5bsD
2/2.

Here the functionF(a) is used:

F~a!5~ma!@22a ln$coth~1/a!%#.

The cell sizeD is then chosen so as to achieve the desi
values ofa and the ratiobm /J. This approach can be use
for instance, to obtain MC results within a prescribed ac
racy by reducing the MC bin size as illustrated in Fig. 14

-

in
-

FIG. 14. MC error as compared with SI model for a series
simulations. The dimension of the MC simulation is increased wh
keeping the SI parameters the same. The SI parameters as
5170.9, ms51.13e–6, bs521.78e–4. The error plotted is the
rms error divided by the initial inner grain fraction of 0.25.
3-7
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